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Abstract 
A new interconnection network is proposed for the 

construction of massively parallel computers. The 
systematic construction of this network, denoted RCN-
FULL, is performed by methodically connecting together a 
number of basic atoms where a basic atom is a set of fully 
connected nodes. Key communication characteristics and 
efficient routing algorithms are derivedfor RCN-FULL. An 
0(log(N)) sorting algorithm is shown for RCN-FULL and 
RCN-FULL is proven to deterministically emulate the 
CRCW PRAM model, with only O(log{N)) degradation in 
time performance. Finally, the hardware cost for the RCN-
FULL is estimated as a function of its pin limitations and 
compared favorably to that of the hypercube. 

1) INTRODUCTION 
One of the main challenges involved in designing a 

parallel algorithm for a parallel processing network follows 
from the fact that the routing of messages from one 
processing element (PE) to another is the responsibility of 
the algorithm designer. This challenge is removed 
completely by using a parallel random access machine 
(PRAM) LI, 3]. In PRAM, the PEs no longer communicate 
directly through a network. Instead, a common memory is 
used as a bulletin board and all data exchanges are executed 
through it. Any pair of PEs can communicate through this 
shared memory in constant time. Various types of PRAMs 
have been defined, differing in the conventions used to deal 
with read/write conflicts. In the most restrictive model, 
EREW PRAMs, no variable may be accessed by more than 
one PE in a given step. In contrast, CRCW PRAMs allow 
simultaneous reading and writing of each variable. 
Unfortunately, the PRAM is not a very realistic model of 
parallel computation when the number of PEs grows large. 

How can we reconcile the convenience of CRCW 
PRAMs with the limitations of a real parallel computer? 
The only alternative is to emulate a CRCW PRAM on a real 
network. Indeed, this school of thought has led many 
researchers to consider the emulation of the PRAM on 
more realistic networks such as the hypercube, the mesh-
of-trees, and the 2-D mesh [1, 5, 7J. However, to the best of 
our knowledge, no practical network has been shown to 
deterministically emulate any of the PRAM models of the 
same size in better than polylogarithmic degradation in 
time performance. Thus, in this paper, we investigate a 

class of Recursively Connected Networks (RCN), which is 
constructed by compounding FULLy connected graphs 
together, termed RCN-FULL; and we find that this class is 
able to emulate any PRAM model with better than 
polylogarithmic degradation in time performance. Hence, 
the design of the RCN-FULL appears to be a step closer 
towards the realization of a practical PRAM. 

The paper is organized as follows. In Section 2 we 
define the RCN-FULL and we present some of its key 
characteristics. In Section 3, we demonstrate the efficient 
emulation of the PRAM models on the RCN-FULL. 
Finally, in Section 4 we analyze the hardware cost of the 
RCN-FULL and compare it to that of the hypercube. 

2) THE RCN-FULL NETWORK 
In this section we define the construction of the 

RCN-FULL, and we analyze some of its communication 
characteristics. Then we present simple routing algorithms. 

2.1) Construction 
The proposed interconnection network, RCN-FULL, 

is a recursive network constructed by connecting together 
a number of basic atoms. A basic atom is a set of fully 
connected nodes. An RCN-FULL is characterized by two 
parameters, (NA, L), where A^ is the number of nodes in the 
basic atom and L is its level of recursion. An (A^, 0) RCN-
FULL is a fully connected network with NA nodes. An (NA, 
1) RCN-FULL is constructed by fully connecting NA basic 
atoms creating a fully network of basic atoms. In general, 
an (A^, L) RCN-FULL of size N is constructed by fully 
connecting Nm (NA, L-\) RCN-FULLs where Nyi is the 
number of nodes in an (NA, L-l) RCN-FULL. Each node in 
an (NA, L) RCN-FULL is specified by an m-bit binary 
number where m = log(AT). The most significant (1/ 
2)log(A0 bits identify the (NA, L-l) RCN-FULL that this 
node belongs to, and the least significant (l/2)log(AT) bits 
are used to distinguish among nodes within the same (NA> 
L-1) RCN-FULL. The links between these (NA, L-1) RCN-
FULLs, referred to as level L transpose links, are formed 
by connecting PE ij to PEji for all i andy, with /' ≠j, where 
i andy are binary numbers of (l/2)log(A0 bits each. Fig. 1 
illustrates a (4, 2) RCN-FULL.. 

2.2) Properties 
The number of nodes, N(NA, L), of an (NA, L) RCN-

FULL is given by N(NA, L) = N2(NA, L-l) where N(NA, 0) 



Fig. 1. Construction of an RCN-FULL (a) Level 1 

Hence if the level of recursion, L, is held constant, the 
diameter of RCN-FULL is 0(1). In this case the network 
grows large by increasing N^. 

The degree of an (NA, L) RCN-FULL, A(NA, L), 
grows by 1 for each additional level of the construction. 

The diameter and the degree of an RCN-FULL compare 
favorably to those of the hypercube for most practical size 
networks. Further, some characteristics of the static and 
dynamic behavior of RCN-FULL (e.g. message delay, 
throughput, fault-tolerance, etc.) has been studied and 
compared favorably to those of the hypercube [4, 5], 

2.3) Routing 
We propose two routing algorithms for the RCN-

FULL which require only the source and the destination 
addresses to perform the routing of messages at any node 
in the network. An (NA, L) RCN-FULL with N nodes can 
be thought of as containing Nm rows of PEs, each being an 
(NA, LA) RCN-FULL, and Nm columns of PEs and the 

rows are fully connected together. In both routing 
algorithms we describe below, the source node is PE i■J^, 
and the destination node is PE i^ where i↑ and i2 indicate 
the row addresses and/'j andy2 indicate column addresses. 

Algorithm i: 
To send a message, m, from a source node to a destination 
node, Algorithm I performs the following steps: 

Step 2 is one routing step along a transpose link for all 
levels of the RCN-FULL. In general, for an (NA, L) RCN-
FULL, steps 1 and 3 are (NA, LA) RCN-FULL routing. 

Algorithm 2: 
The second routing algorithm has been identified to solve 
the congestion problem that could occur using Algorithm J 
when there is a high transfer of data between two rows. 
Algorithm 2 routes a message, m, from a source node to a 
destination node by performing the following steps: 

For an (NA, L) RCN-FULL, steps 2 and 4 are routing within 
an (NA, LA) RCN-FULL, and steps 1 and 3 are routing 
along level L transpose links. 

3) EMULATION OF PRAM ON RCN-FULL 
The implementation of data movement operations 

that enable realistic networks to emulate a CRCW PRAM 
has been considered by many researchers. These data 
movement operations are random access read (RAR) and 
random access write (RAW), also known as concurrent 
read and concurrent write, respectively [7, 8]. They are 
implemented using well-defined routines. We will analyze 
the time complexity of each of these routines on the RCN-
FULL to find the time complexity of RAR and RAW when 
performed on the RCN-FULL. These routines are sorting, 
compression, ranking, distribution, and generalization. 

3.1) Sorting on RCN-FULL 
The sorting algorithm is defined as follows: a 

collection of N elements are distributed in the RCN-FULL, 
one element per PE; then viewing the input as an NXI2 × Nl/ 

2 array, the array is sorted into row-major order. The 
following sorting algorithm is based on the sorting 
algorithm given by Marberg and Gafini [6], and works by 
alternately transforming the rows and columns of the RCN-
FULL a constant number of times. It perfectly suits the 
structure and the transpose capability of the RCN-FULL 
topology, and is given below: 

Algorithm RCN-FULL SORT 
1. Sort all the columns downward. 
2. Sort all the rows to the right. 

Denoting the diameter of an (NA, L) RCN-FULL by D(NA, 
L), from the construction of the RCN-FULL we see that 



3. Rotate each row, i, i x Nm (mod Nm) positions to the 
right. 

4. Sort all columns downward. 
5. Rotate each row, i, i (mod N↑/2) positions to the right. 
6. Sort all the columns downward. 
7. Rotate each row, i, i × Nm (mod Nl/2) positions to the 

right. 
8. Sort all the columns downward. 
9. Perform the following two steps 3 times 

a. Sort all even-numbered rows to the right and all 
odd-numbered rows to the left, 

a. Sort all columns downward. 
10. Sort all rows to the right. 

Since rotation of elements within a row can be 
emulated by sorting along that row, all the steps of RCN-
FULL SORT can be implemented by using sorting in a row 
or column in an RCN-FULL. For an (NA, 1) RCN-FULL, 
each row is a fully connected network; thus sorting the 
rows of an (NA, 1) RCN-FULL takes O{log{N)) time, since 
sorting N elements on a fully connected network of size N 
takes O(log(A0) time [1, 2]. Sorting on the columns of an 
(A^, 1) RCN-FULL can be performed on the rows after 
performing, with one parallel exchange operation by using 
the transpose links, a network transposition. One final 
transposition returns all data to their desired destinations. 
Hence, sorting the columns of an (NA, 1) RCN-FULL takes 
O(log(A0) time, and the whole sorting algorithm can be 
performed in 0(\og(N)) time. In general, for an (NA, L) 
RCN-FULL, the sorting time, ST{L) is given by 

Thus if L is held constant, the time complexity of RCN-
FULL SORT is 0(\og(N)). 

3.2) RAR and RAW time complexity 
Here we develop the time complexity of 

compression, ranking, distribution, and generalization [8] 
which when added to the time complexity of RCN-FULL 
SORT would give us the time complexity of RAR and 
RAW on the RCN-FULL. These routines are all instances 
of the ascend class of algorithms [5], An algorithm is said 
to be in the ascend class if it performs a sequence of 
operations on pairs of data that are successively 2°, 21,..., 
2*"1 locations apart on a problem of size 2k [5]. 

An algorithm of size N - 2k which is in the ascend 
class can be performed on an RCN-FULL in the following 
manner: 

1. Perform operations on pairs of data that are 
successively 2°, 2 ,..., 2 locations apart. 

Thus if L is held constant, the time complexity of an 
algorithm in the ascend class is O{log{N)). 

Hence, compression, ranking, distribution, and 
generalization can each be executed on the RCN-FULL in 
0(log(N)) time [4, 5]. A RAR is performed by executing 
the sorting twice, the ranking once, the compression twice, 
the distribution once, and the generalization once [5]. Thus, 
to perform a RAR operation, an RCN-FULL requires 
O{log{N)) time. A RAW operation is performed by 
executing the sorting once, the ranking once, the 
compression once, and the distribution once [5J. Thus, to 
perform a RAW operation, an RCN-FULL requires 
O(log(A0) time. Hence, an RCN-FULL of size N can 
emulate a CRCW PRAM of the same size with at most 
O(log(A0) degradation in time performance. This also 
means that O{log{N)) is an upper bound on the time needed 
for the RCN-FULL to emulate arbitrary interconnection 
networks of the same size. Thus, in some sense the RCN-
FULL can be considered as a universal network [7]. 

4) HARDWARE COST 
One useful measure of hardware cost is the area 

required when the entire parallel computer is laid out on a 
single sheet of silicon. This measure has been well studied, 
and the VLSI area requirement of many networks are also 
known. However, actual parallel machines are typically 
laid out on a number of separate chips, each of which has a 
limited number of pins through which connections can be 
made to other chips. In most cases the number of pins 
available per chip is a more serious limitation than the 
amount of VLSI area available per chip. This is particularly 
true for networks that have a relatively large number of 
links per PE such as the hypercube and the RCN-FULL. 
This has motivated the analysis presented in this paper 
about the chip pin requirements of the RCN-FULL and its 
comparison to that of the hypercube. 

Let N be the number of network PEs, and UCB be 
the number of chips to which the network is partitioned. 

where Kx = 15 and K2 = 14 as found from RCN-FULL 
SORT. Since ST(0) = K3\og(N) with K2 constant [ 1,2], then 
by solving the recursion we get 

Solving this recursion we get 

2. Exchange all the data in the PEs which are 
directly connected through a transpose link. 

3. Perform operations on pairs of data that are 
successively 2 , 2 ,..., 2U locations apart. 

4. Exchange all the data in the PEs which are 
directly connected through a transpose link. 

When L = 0, it takes log{A7) time steps to perform the above 
algorithm on an RCN-FULL since all the PEs are directly 
connected together [5]. To perform the above algorithm on 
an {NA, L) RCN-FULL, steps 1 and 3 would be the 
execution of an algorithm of size 2 in the ascend class on 
an {NA, L-1) RCN-FULL. Thus if we denote AS(L) to be the 
number of communication steps taken on an (NA, L) RCN-
FULL to execute an algorithm in the ascend class, we get 



The goal is to find the minimum number of pins per chip, 
MIOC, over all partitions. For a hypercube, we assume that 
it is partitioned into smaller dimensional hypercubes with 
MPC PEs each, that is, MPC = N/MCB. Each PE will then 
be connected to 0(log(A0 - log<MMCB)) ■ OQog{MCB)) 
PEs in different chips. Thus, the total number of pins per 
chip is MIOC = 0(N/MCB(log(MCB))). 
Theorem 1: For a hypercube network with N processors 
partitioned over MCB chips, the pin requirement per chip, 
MIOC, is given by MIOC = 0(NIMCB(log(MCB))). 

Now, let us determine the chip pin requirements of 
an RCN-FULL of size N. We carry our analysis under the 
following two cases: 
Case 1: When the number of partitions (chips), MCB, is ≤ 
N . In this case, we assume that the partitioning is being 
performed horizontally. That is, each chip will contain an 
integral number of (NA, L-1) RCN-FULLs. 

In this case only transpose links would be needed to 
connect PEs in different chips. Thus, the total number of 
pins needed is equivalent to partitioning a fully connected 
network, FCN, of size Nm since we have N/2copies of 
(NA, L-l) RCN-FULLs. The number of links in each PE of 
an Nm FCN is Nm -1. Each PE will be connected to 0(Nl/ 

2-l - (Nm/MCB -1)) = 0(Af1/2 - NmIMCB) PEs on different 
chips. Thus, the pin requirement per chip is MIOC = 0(Nl/ 

2IMCB{Nm - Nt/2/MCB)) = O{NIMCB - NIMCB2). 
Theorem 2: For an RCN-FULL of size N partitioned over 
MCB chips, the pin requirement per chip is given by MIOC 
= O{NIMCB - NIMCB2), where MCB ≤Nm. 

Thus, when MCB ≤ N↑/2, the pin requirements of the 
RCN-FULL is asymptotically less than that of the 
hypercube. Fig. 2 compares favorably the pin requirements 
of an RCC-FULL to that of the hypercube. Moreover, since 
the number of pins per chip cannot be arbitrarily high, 
many of the hypercube chip requirements are unrealistic. 

Fig. 2. Pin requirements at the chip level for an 
RCN-FULL and a hypercube. 

Case 2: We assume that the number of partitions (chips) 
of an RCN-FULL is MCB = I × NV2, where I is an integer 
> 2. That is, each (NA, L-l) RCN-FULL is partitioned over 
exactly/chips. 

In this case the number of pins per chips, MIOC, 
would correspond to transpose links and to internal links 

of an (NA, L-l) RCN-FULL. The number of pins that 
correspond to transpose links is 0(N/MCB↑ - NIMCB2), 
where MCB\ = Nl/2. Therefore, the pins that correspond to 
transpose links, MIOCT, is 0(Nm - 1) for each (NA, L-l) 
RCN-FULL. For the number of pins that correspond to 
internal links, we have two cases: 
A) When L = 1, the number of pins per chip that correspond 
to internal links is O{NII - N/I2). 
B) When L > 1, then the number of pins per chip that 
correspond to internal links is 0(Nm/I - N"2II2). In this 
case, since I ≤ Nl/2, it would correspond to Case 1. 

Theorem 3: For an RCN-FULL of size N partitioned over 
MCB chips, and MCB = I X N112, the pin requirement per 
chip is MIOC = O{NII - Nil2 + NmII - 1) when L = 1, and 
is MIOC = 0(Nll2/I - Nm/I2 + Nm/I - 1) when L > 1. 

In this case, the pin requirements for an (NA, 1) RCN-
FULL is asymptotically equivalent to that of a hypercube. 
However, when L > 1, the pin requirements of the RCN-
FULL is asymptotically less than those of a hypercube. 

5) CONCLUSION 
We have presented a new interconnection network, 

RCN-FULL, for the construction of massively parallel 
computers. Its construction and some of its key properties 
have been shown. A sorting algorithm is shown which has 
O{log{N)) time and the RCN-FULL has been shown to 
emulate the CRCW PRAM model in O(log(A0) time. The 
hardware cost of the RCN-FULL under pin limitations has 
been compared favorably to that of the hypercube. RCN-
FULL offers good potential as a network for systems which 
emulate the PRAM models and which can be considered as 
universal networks. 
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