1994 International Conference on Parallel Processing

EFFICIENT CRCW PRAM EMULATION ON PRACTICAL NETWORKS

Mounir Hamdi
Department of Computer Science
Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong
Email: hamdi@cs.ust.hk

Abstract

A new interconnection network is proposed for the
construction of massively parallel computers. The
systematic construction of this network, denoted RCN-
FULL, is performed by methodically connecting together a
number of basic atoms where a basic atom is a set of fully
connected nodes. Key communication characteristics and
efficient routing algorithms are derived for RCN-FULL. An
O(log(N)) sorting algorithm is shown for RCN-FULL and
RCN-FULL is proven to deterministically emulate the
CRCW PRAM model, with only O(log(N)) degradation in
time performance. Finally, the hardware cost for the RCN-
FULL is estimated as a function of its pin limitations and
compared favorably to that of the hypercube.

1) INTRODUCTION

One of the main challenges involved in designing a
parallel algorithm for a parallel processing network follows
from the fact that the routing of messages from one
processing element (PE) to another is the responsibility of
the algorithm designer. This challenge is removed
completely by using a parallel random access machine
(PRAM) |1, 3]. In PRAM, the PEs no longer communicate
directly through a network. Instead, a common memory is
used as a bulletin board and all data exchanges are executed
through it. Any pair of PEs can communicate through this
shared memory in constant time. Various types of PRAMs
have been defined, differing in the conventions used to deal
with read/write conflicts, In the most restrictive model,
EREW PRAMs, no variable may be accessed by more than
one PE in a given step. In contrast, CRCW PRAMs allow
simultaneous reading and writing of each variable.
Unfortunately, the PRAM is not a very realistic model of
parallel computation when the number of PEs grows large.

How can we reconcile the convenience of CRCW
PRAMs with the limitations of a real parallel computer?
The only alternative is to emulate a CRCW PRAM on areal
network. Indeed, this school of thought has led many
researchers to consider the emulation of the PRAM on
more realistic networks such as the hypercube, the mesh-
of-trees, and the 2-D mesh [1, 5, 7]. However, to the best of
our knowledge, no practical network has been shown to
deterministically emulate any of the PRAM models of the
same size in better than polylogarithmic degradation in
time performance. Thus, in this paper, we investigate a

class of Recursively Connected Networks (RCN), which is
constructed by compounding FULLy connected graphs
together, termed RCN-FULL; and we find that this class is
able to emulate any PRAM model with better than
polylogarithmic degradation in time performance. Hence,
the design of the RCN-FULL appears to be a step closer
towards the realization of a practical PRAM.

The paper is organized as follows. In Section 2 we
define the RCN-FULL and we present some of its key
characteristics. In Section 3, we demonstrate the efficient
emulation of the PRAM models on the RCN-FULL.
Finally, in Section 4 we analyze the hardware cost of the
RCN-FULL and compare it to that of the hypercube.

2) THE RCN-FULL NETWORK

In this section we define the construction of the
RCN-FULL, and we analyze some of its communication
characteristics. Then we present simple routing algorithms.

2.1) Construction

The proposed interconnection network, RCN-FULL,
is a recursive network constructed by connecting together
a number of basic atoms. A basic atom is a set of fully
connected nodes. An RCN-FULL is characterized by two
parameters, (N4, L), where N4 is the number of nodes in the
basic atom and L is its level of recursion. An (N4, 0) RCN-
FULL is a fully connected network with N nodes. An (Ny,
1) RCN-FULL is constructed by fully connecting N4 basic
atoms creating a fully network of basic atoms. In general,
an (N4, L) RCN-FULL of size N is constructed b2y fully
connecting N2 (N4, L-1) RCN-FULLs where NYZ g the
number of nodes in an (N4, L-1) RCN-FULL. Each node in
an (N4, L) RCN-FULL is specified by an m-bit binary
number where m = log(N). The most significant (1/
2)log(N) bits identify the (N4, L-1) RCN-FULL that this
node belongs to, and the least significant (1/2)log(N) bits
are used to distinguish among nodes within the same (N,
L-1)RCN-FULL. The links between these (N4, L-1) RCN-
FULLs, referred to as level L transpose links, are formed
by connecting PE ij to PE ji for all j and j, with i #j, where
i and j are binary numbers of (1/2)log(N) bits each. Fig. 1
illustrates a (4, 2) RCN-FULL. .

2.2) Properties
The number of nodes, N(Ny4, L), of an (N4, L) RCN-
FULL is given by NM(Ny, L) = NZ(NA, L-1) where N(Ny4, 0)

IT1-147

1994 International Conference on Parallel Processing

@AW

TEE AT D

-l
VAR A4

AT AT,

D —t)—)

(a)

Level 1

vel b Lol 2] - -]y
[16] /] 18] YAE
/S~ S
[32]33[3e] < 7 |41]

Paol2atpar] . . . |255

(b)
Fig. 1. Construction of an RCN-FULL (a) Level 1
RCN-FULL. (b)Level 2 RCN-FULL.
= Ny; thus

L
NNy L) = N M

Denoting the diameter of an (N, L) RCN-FULL by D(Ny,
L), from the construction of the RCN-FULL we see that
D(Ny, LYy=2D(Ny4, L-1) + 1, where D(Ny4, 0) = 1; thus

D(N, Ly =2""1-1. @)
Hence if the level of recursion, L. is held constant, the
diameter of RCN-FULL is O(1). In this case the network
grows large by increasing Ny.

The degree of an (N4, L) RCN-FULL, A(N,, L),
grows by 1 for each additional level of the construction.
Thus A(N,, L) = ANy, L-1)+1, where A(N4,0) =N, - 1 and

AN, L) =NA+L—1. (3)

The diameter and the degree of an RCN-FULL compare
favorably to those of the hypercube for most practical size
networks. Further, some characteristics of the static and
dynamic behavior of RCN-FULL (e.g. message delay,
throughput, fault-tolerance, etc.) has been studied and
compared favorably to those of the hypercube [4, 5].

2.3) Routing

We propose two routing algorithms for the RCN-
FULL which require only the source and the destination
addresses to perform the routing of messages at any node
in the network. An (N4, L) RCN-FULL with N nodes can
be thought of as containing N2 rows of PEs, each being an
(N4, L-1) RCN-FULL, and N2 columns of PEs and the

rows are fully connected together. In both routing
algorithms we describe below, the source node is PE iyj;,
and the destination node is PE iyj, where iy and i, indicate
the row addresses and j; and /, indicate column addresses.

Algorithm 1:
To send a message, m, from a source node to a destination
node, Algorithm I performs the following steps:

1) PE i,j; sends m to PE iyi,.

2) PE ijiy sends mto PE iyi;.

3) PE iyi; sends m to PE iyjs.

Step 2 is one routing step along a transpose link for all
levels of the RCN-FULL. In general, for an (N4, L) RCN-
FULL, steps 1 and 3 are (N4, L-1) RCN-FULL routing.

Algorithm 2:
The second routing algorithm has been identified to solve
the congestion problem that could occur using Algorithm 1
when there is a high transfer of data between two rows.
Algorithm 2 routes a message, m, from a source node to a
destination node by performing the following steps:

1) PE iyj; sends m to PE ji.
2) PE jyiy sends m to PE ji,.
3) PE j,i; sends m to PE iyjy.
4) PE iyj) sends m to PE iyj,.

For an (N4, L) RCN-FULL, steps 2 and 4 are routing within
an (N4, L-1) RCN-FULL, and steps 1 and 3 are routing
along level L transpose links.

3) EMULATION OF PRAM ON RCN-FULL

The implementation of data movement operations
that enable realistic networks to emulate a CRCW PRAM
has been considered by many researchers. These data
movement operations are random access read (RAR) and
random access write (RAW), also known as concurrent
read and concurrent write, respectively [7, 8]. They are
implemented using well-defined routines. We will analyze
the time complexity of each of these routines on the RCN-
FULL to find the time complexity of RAR and RAW when
performed on the RCN-FULL. These routines are sorting,
compression, ranking, distribution, and generalization.

3.1) Sorting on RCN-FULL

The sorting algorithm is defined as follows: a
collection of N elements are distributed in the RCN-FULL,
one element per PE; then viewing the input as an N 12 o« NV
2 array, the array is sorted into row-major order. The
following sorting algorithm is based on the sorting
algorithm given by Marberg and Gafini [6], and works by
alternately transforming the rows and columns of the RCN-
FULL a constant number of times. It perfectly suits the
structure and the transpose capability of the RCN-FULL
topology, and is given below:

Algorithm RCN-FULL SORT

1. Sort all the columns downward.
2. Sort all the rows to the right.

ITI-148

1994 International Conference on Paraliel Processing

3, Rotate each row, i, i X N4 (mod N 1 2) positions to the
right.
4, Sort all columns downward.
5. Rotate each row, i, i (mod N/ positions to the right.
6. Sort all the columns downward.
7. Rotate each row, i, i x N1/4 (mod N”2) positions to the
right.
8. Sort all the columns downward.
9. Perform the following two steps 3 times
a. Sort all even-numbered rows to the right and all
odd-numbered rows to the left.
a. Sort all columns downward.
10. Sort all rows to the right.

Since rotation of elements within a row can be
emulated by sorting along that row, all the steps of RCN-
FULL SORT can be implemented by using sorting in a row
or column in an RCN-FULL. For an (N4, 1) RCN-FULL,
each row is a fully connected network; thus sorting the
rows of an (N4, 1) RCN-FULL takes O(log(N)) time, since
sorting N elements on a fully connected network of size N
takes O(log(NV)) time [1, 2]. Sorting on the columns of an
(N4, 1) RCN-FULL can be performed on the rows after
performing, with one parallel exchange operation by using
the transpose links, a network transposition. One final
transposition returns all data to their desired destinations.
Hence, sorting the columns of an (N4, 1) RCN-FULL takes
O(log(N)) time, and the whole sorting algorithm can be
performed in O(log(N)) time. In general, for an (Ny, L)
RCN-FULL, the sorting time, ST(L) is given by

ST(L) = K{ST(L—1) +k, 4)
where K| = 15 and K, = 14 as found from RCN-FULL

SORT. Since ST(0) = K3log(N) with K constant [1, 2], then
by solving the recursion we get

N 1 —Kll‘
K (logN) + -k, K, (5)

ST(L)

Thus if L is held constant, the time complexity of RCN-
FULL SORT is O(log(N)).

3.2) RAR and RAW time complexity

Here we develop the time complexity of
compression, ranking, distribution, and generalization [8]
which when added to the time complexity of RCN-FULL
SORT would give us the time complexity of RAR and
RAW on the RCN-FULL. These routines are all instances
of the ascend class of algorithms [5]. An algorithm is said
to be in the ascend class if it performs a sequcnce of
oi)eratlons on pairs of data that are successwely 20 21,

locations apart on a problem of size 2k [5].

An algorithm of size N = 2% which is in the ascend
class can be performed on an RCN-FULL in the following
manner:

1. Perform operatlons on falrs of data that are
successively 2 2 ! locations apart.

2. Exchange all the data in the PEs which are
directly connected through a transpose link.

3. Perform operatlons owaqu of data that are
successively 2 2! . locations apart.

4, Exchange all the data in the PEs which are
directly connected through a transpose link.

When L =0, it takes log(N) time steps to perform the above
algorithm on an RCN-FULL since all the PEs are directly
connected together [5]. To perform the above algorithm on
an (N4, L) RCN-FULL, steps 1 and 3 would be the
execution of an algorithm of size 2¥2 in the ascend class on
an (N4, L-1) RCN-FULL. Thus if we denote AS(L) to be the
number of communication steps taken on an (N4, L) RCN-
FULL to execute an algorithm in the ascend class, we get

AS(L)=2AS(L-1)+2, 6)
where AS(0) = log(N). Solving this recursion we get
AS(L) =2 (log(N) +2) - 2. N

Thus if L is held constant, the time complexity of an
algorithm in the ascend class is O(log(N)).

Hence, compression, ranking, distribution, and
generalization can each be executed on the RCN-FULL in
O(log(N\)) time [4, 5]. A RAR is performed by executing
the sorting twice, the ranking once, the compression twice,
the distribution once, and the generalization once [5]. Thus,
to perform a RAR operation, an RCN-FULL requires
O(log(N)) time. A RAW operation is performed by
executing the sorting once, the ranking once, the
compression once, and the distribution once [5]. Thus, to
perform a RAW operation, an RCN-FULL requires
O(log(N)) time. Hence, an RCN-FULL of size N can
emulate a CRCW PRAM of the same size with at most
O(log(N)) degradation in time performance. This also
means that O(log(N)) is an upper bound on the time needed
for the RCN-FULL to emulate arbitrary interconnection
networks of the same size, Thus, in some sense the RCN-
FULL can be considered as a universal network [7].

4) HARDWARE COST

One useful measure of hardware cost is the area
required when the entire parallel computer is laid out on a
single sheet of silicon. This measure has been well studied,
and the VLSI area requirement of many networks are also
known. However, actual parallel machines are typically
laid out on a number of separate chips, each of which has a
limited number of pins through which connections can be
made to other chips. In most cases the number of pins
available per chip is a more serious limitation than the
amount of VLST area available per chip. This is particularly
true for networks that have a relatively large number of
links per PE such as the hypercube and the RCN-FULL.
This has motivated the analysis presented in this paper
about the chip pin requirements of the RCN-FULL and its
comparison to that of the hypercube.

Let N be the number of network PEs, and MCB be
the number of chips to which the network is partitioned.

ITITI-149

1994 International Conference on Parallel Processing

The goal is to find the minimum number of pins per chip,
MIOC, over all partitions. For a hypercube, we assume that
it is partitioned into smaller dimensional hypercubes with
MPC PEs each, that is, MPC = N/ MCB. Each PE wili then
be connected to O(log(N) - log(N/MCB)) = O(log(MCB))
PEs in different chips. Thus, the total number of pins per
chip is MIOC = O(N/MCB(log(MCB))).

Theorem 1: For a hypercube network with N processors
partitioned over MCB chips, the pin requirement per chip,
MIOC, is given by MIOC = O(N/MCB(log(MCB))).

Now, let us determine the chip pin requirements of
an RCN-FULL of size N. We carry our analysis under the
following two cases:

Case 1: When the number of partitions (chips), MCB, is <
N'2_In this case, we assume that the partitioning is being
performed horizontally. That is, each chip will contain an
integral number of (N, L-1) RCN-FULLs.

In this case only transpose links would be needed to
connect PEs in different chips. Thus, the total number of
pins needed is equivalent to partitioning a fully connected
network, FCN, of size NV2 since we have N /zcopies of
(N4, L-1) RCN-FULLSs. The number of links in each PE of
an N2 FCNis N2 - 1. Each PE will be connected to O(NY
2.1 - (NV2MCB -1)) = O(N? - NV2)MCB) PEs on different
chips. Thus, thelpin requirement per chip is MIOC = oY
YMCB(N'2 - NV21MCB)) = O(NIMCB - NIMCB?).

Theorem 2: For an RCN-FULL of size N partitioned over
MCB chips, the pin re(iuirement per chip is given by MIOC
= O(N/MCB - NIMCB?), where MCB <N"?.

Thus, when MCB < N2, the pin requirements of the
RCN-FULL is asymptotically less than that of the
hypercube. Fig. 2 compares favorably the pin requirements
of an RCC-FULL to that of the hypercube. Moreover, since
the number of pins per chip cannot be arbitrarily high,
many of the hypercube chip requirements are unrealistic.

REEEART =

Fig. 2. Pin requirements at the chip level for an
RCN-FULL and a hypercube.
Case 2: We assume that the number of partitions (chips)
of an RCN-FULL is MCB = I x N'/, where I is an integer
2 2. That is, each (N4, L-1) RCN-FULL is partitioned over
exactly 7 chips.

In this case the number of pins per chips, MIOC,
would correspond to transpose links and to internal links

of an (N4, L-1) RCN-FULL. The number of pins that
correspond to tfranspose links is O(N/MCB, - N/MCBlz),
where MCB; =N U2 Therefore, the pins that correspond to
transpose links, MIOCr, is O(N”2 - 1) for each (Ny, L-1)
RCN-FULL. For the number of pins that correspond to
internal links, we have two cases:

A) When L =1, the number ofgins per chip that correspond
to internal links is O(N/I - NII).

B) When L > 1, then the number of pins lpcr chip that
correspond to internal links is 0(N”2/1 -N ’2/12). In this
case, since I £ N”z, it would correspond to Case 1.

Theorem 3: For an RCN-FULL of size N partitioned over
MCB chips, and MCB = I x N2, the pin requirement per
chip is MIOC = O(NII - NII? + N2/1 - 1) when L = 1, and
is MIOC = ONYI1 - NY2112 + N1 - 1) when L > 1.

In this case, the pin requirements for an (N, 1) RCN-
FULL is asymptotically equivalent to that of a hypercube.
However, when L > 1, the pin requirements of the RCN-
FULL is asymptotically less than those of a hypercube.

5) CONCLUSION

We have presented a new interconnection network,
RCN-FULL, for the construction of massively parallel
computers. Its construction and some of its key properties
have been shown. A sorting algorithm is shown which has
O(log(N)) time and the RCN-FULL has been shown to
emulate the CRCW PRAM model in O(log(N)) time. The
hardware cost of the RCN-FULL under pin limitations has
been compared favorably to that of the hypercube. RCN-
FULL offers good potential as a network for systems which
emulate the PRAM models and which can be considered as
universal networks.

References

1. Alt H., Hagerup T., Mehlhorn K.., ‘‘Deterministic
simulation of idealized parallel computers on more
realistic ones,”” SIAM J. Comput., pp. 808-835, 1987.

2. R.Cole, ‘‘Parallel merge sort,”” SIAM J. Comput., Vol.
17, pp. 770-785, 1988.

3. Fortune S. and Wyllie J., *‘Parallelism in random
access machines,”” Proc. ACM Symp. Theory
Comput., 1978, pp. 114-118.

4, Hamdi M. and Hall R. W., “*An efficient class of
interconnection networks of parallel computations,’’
The Computer Journal, 1994.

5. Hamdi M., Communication-Efficient Interconnection
Networks for Parallel Computations. Ph.D. Thesis,
Department of Electrical Engineering, University of
Pittsburgh, 1991.

6. Maberg J. M., and Gafni E., ‘‘Sorting in constant
number of row and column phases in a mesh,”’
Algorithmica, pp. 561-572, 1988.

7. Miller R, and Stout Q. F. Parallel Algorithms for
Regular Architectures. MIT Press, 1990.

8. Nassimi D., and Sahni S., ‘‘Data broadcasting in SIMD
computers,”’ IEEE Trans. Comput. Vol. 30, pp. 101-
107, 1981,

III-150

